Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Cánh diều

Tính: a) (intlimits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} ) b) (intlimits_1^2 {frac{1}{{{x^4}}}dx} ) c) (intlimits_1^4 {frac{1}{{xsqrt x }}dx} ) d) (intlimits_0^{frac{pi }{2}} {(4sin x + 3cos x)dx} ) e) (intlimits_{frac{pi }{4}}^{frac{pi }{2}} {{{cot }^2}xdx} ) g) (intlimits_0^{frac{pi }{4}} {{{tan }^2}xdx} ) h) (intlimits_{ - 1}^0 {{e^{ - x}}dx} ) i) (intlimits_{ - 2}^{ - 1} {{e^{x + 2}}dx} ) k) (intlimits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx}

Đề bài

Tính:

a) \(\int\limits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx} \)

b) \(\int\limits_1^2 {\frac{1}{{{x^4}}}dx} \)

c) \(\int\limits_1^4 {\frac{1}{{x\sqrt x }}dx} \)

d) \(\int\limits_0^{\frac{\pi }{2}} {(4\sin x + 3\cos x)dx} \)

e) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}xdx} \)

g) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx} \)

h) \(\int\limits_{ - 1}^0 {{e^{ - x}}dx} \)

i) \(\int\limits_{ - 2}^{ - 1} {{e^{x + 2}}dx} \)

k) \(\int\limits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx} \)

Phương pháp giải - Xem chi tiết

Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là nguyên hàm của f(x) trên đoạn [a;b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)} dx\)

Lời giải chi tiết

a) \(\int\limits_0^1 {({x^6} - 4{x^3} + 3{x^2})dx}  = \left. {\left( {\frac{{{x^7}}}{7} - {x^4} + {x^3}} \right)} \right|_0^1 = \frac{1}{7}\)

b) \(\int\limits_1^2 {\frac{1}{{{x^4}}}dx}  = \left. {\left( { - \frac{1}{{3{x^3}}}} \right)} \right|_1^2 = \frac{7}{{24}}\)

c) \(\int\limits_1^4 {\frac{1}{{x\sqrt x }}dx}  = \left. {\frac{{ - 2}}{{\sqrt x }}} \right|_1^4 = 1\)

d) \(\int\limits_0^{\frac{\pi }{2}} {(4\sin x + 3\cos x)dx}  = \left. {\left( { - 4\cos x + 3\sin x} \right)} \right|_0^{\frac{\pi }{2}} = 7\)

e) \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {{{\cot }^2}xdx}  = \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\frac{1}{{{{\sin }^2}x}} - 1} \right)dx}  = \left. {\left( { - \cot x - x} \right)} \right|_{\frac{\pi }{4}}^{\frac{\pi }{2}} =  - \frac{\pi }{2} - ( - 1 - \frac{\pi }{4}) = 1 - \frac{\pi }{4}\)

g) \(\int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}xdx}  = \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx}  = \left. {\left( {\tan x - x} \right)} \right|_0^{\frac{\pi }{4}} = 1 - \frac{\pi }{4}\)

h) \(\int\limits_{ - 1}^0 {{e^{ - x}}dx}  =  - \left. {{e^{ - x}}} \right|_{ - 1}^0 = e - 1\)

i) \(\int\limits_{ - 2}^{ - 1} {{e^{x + 2}}dx}  = \left. {{e^{x + 2}}} \right|_{ - 2}^{ - 1} = e - 1\)

k) \(\int\limits_0^1 {({{3.4}^x} - 5{e^{ - x}})dx}  = \left. {\left( {3.\frac{{{4^x}}}{{\ln 4}} + 5{e^{ - x}}} \right)} \right|_0^1 = \frac{9}{{\ln 4}} + \frac{5}{e} - 5\)

  • Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Cho (intlimits_0^4 {f(x)dx} = 4,intlimits_3^4 {f(x)dx} = 6). Tính (intlimits_0^3 {f(x)dx} )

  • Giải bài tập 9 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Ở nhiệt độ (37^circ C), một phản ứng hóa học từ chất đầu A, chuyển hóa thành sản phẩm B theo phương trình: (A to B). Giả sử y(x) là nồng độ chất A (đơn vị mol ({L^{ - 1}})) tại thời gian x (giây), y(x) > 0 với (x ge 0), thỏa mãn hệ thức (y'(x) = - {7.10^{ - 4}}y(x)) với (x ge 0). Biết rằng tại x = 0, nồng độ (đầu) của A là 0,05 mol ({L^{ - 1}}). a) Xét hàm số (f(x) = ln y(x)) với (x ge 0). Hãy tính f’(x), từ đó hãy tìm hàm số f(x) b) Giả sử tính nồng độ trung bình chất

  • Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Cánh diều

    Một vật chuyển động với vận tốc được cho bởi đồ thị ở Hình 9. a) Tính quãng đường mà vật di chuyển được trong 1 giây đầu tiên b) Tính quãng đường mà vật di chuyển được trong 2 giây đầu tiên

  • Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Cánh diều

    a) Cho một vật chuyển động với vận tốc y = v(t) (m/s). Cho 0 < a < b và v(t) > 0 với mọi \(t \in [a;b]\). Hãy giải thích vì sao \(\int\limits_a^b {v(t)dt} \) biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b (a,b tính theo giây) b) Áp dụng công thức ở câu a) để giải bài toán sau: một vật chuyển động với vận tốc v(t) = 2 – sint (m/s). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm t = 0 (s) đến thời điểm \(t = \frac{{3\pi }}{4}\) (s)

  • Giải bài tập 4 trang 26 SGK Toán 12 tập 2 - Cánh diều

    Cho \(\int\limits_{ - 2}^3 {f(x)dx} = - 10\), \(F(x)\) là một nguyên hàm của hàm số f(x) trên đoạn [-2;3], F(3) = -8. Tính F(-2)

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close