Giải mục 1 trang 15,16,17 SGK Toán 12 tập 1 - Kết nối tri thức

Định nghĩa

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Trả lời câu hỏi Hoạt động 1 trang 15 SGK Toán 12 Kết nối tri thức

Cho hàm số y=f(x)=x22x với x[0;3], có đồ thị như Hình 1.15.

a) Giá trị lớn nhất M của hàm số trên đoạn [0;3] là bao nhiêu? Tìm x0 sao cho f(x0)=M.

b) Giá trị nhỏ nhất m của hàm số trên đoạn [0;3] là bao nhiêu? Tìm x0 sao cho f(x0)=m.

Phương pháp giải:

Sử dụng kiến thức về đọc hiểu đồ thị hàm số.

Lời giải chi tiết:

a) Giá trị lớn nhất của đồ thị hàm số trên đoạn [0;3]M=3.

Với x0=3 thì f(3)=3.

b) Giá trị nhỏ nhất của đồ thị hàm số trên đoạn [0;3]m=1.

Với x0=1 thì f(1)=1.

LT1

Trả lời câu hỏi Luyện tập 1 trang 17 SGK Toán 12 Kết nối tri thức

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=2xx2;

b) y=x+1x1 trên khoảng (1;+).

Phương pháp giải:

Sử dụng kiến thức về khái niệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số để tính: Cho hàm số y=f(x) xác định trên tập D.

+ Số M được gọi là giá trị lớn nhất của hàm số y=f(x) trên tập D nếu f(x)M với mọi xD và tồn tại x0D sao cho f(x0)=M.

Kí hiệu M=maxxDf(x) hoặc M=maxDf(x)

+ Số m được gọi là giá trị nhỏ nhất của hàm số y=f(x) trên tập D nếu f(x)m với mọi xD và tồn tại x0D sao cho f(x0)=m.

Kí hiệu m=minxDf(x) hoặc m=minDf(x)

Lời giải chi tiết:

a) Tập xác định của hàm số là [0;2].

Với x[0;2] ta có: y=(2xx2)22xx2=x+12xx2y=0x+12xx2=0x=1(tm)

Lập bảng biến thiên của hàm số trên đoạn [0;2]:

Từ bảng biến thiên ta thấy: min[1;1]f(x)=f(0)=f(2)=0,max[1;1]f(x)=f(1)=1.

b) Với x(1;+) ta có:

Ta có: y=1+1(x1)2<0x(1;+)

limx1+y=limx1+(x+1x1)=+;limx+y=limx+(x+1x1)=

Lập bảng biến thiên của hàm số trên (1;+):

Vậy hàm số không có giá trị lớn nhất, giá trị nhỏ nhất trên (1;+).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close