-
Câu hỏi mở đầu trang 4
Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi v(t) = 5 + 3t (m/s), với t là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà.
Xem chi tiết -
Bài 4.1 trang 11
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao? a) \(F\left( x \right) = x\ln x\) và \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\); b) \(F\left( x \right) = {e^{\sin x}}\) và \(f\left( x \right) = {e^{\cos x}}\) trên \(\mathbb{R}\).
Xem chi tiết -
Bài 4.2 trang 11
Tìm nguyên hàm của các hàm số sau: a) \(f\left( x \right) = 3{x^2} + 2x - 1\); b) \(f\left( x \right) = {x^3} - x\); c) \(f\left( x \right) = {\left( {2x + 1} \right)^2}\); d) \(f\left( x \right) = {\left( {2x - \frac{1}{x}} \right)^2}\).
Xem chi tiết -
Bài 4.3 trang 11
Tìm: a) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx\); b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx\left( {x > 0} \right)\); c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx\); d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx\).
Xem chi tiết -
Bài 4.4 trang 11
Tìm: a) (int {left( {2cos x - frac{3}{{{{sin }^2}x}}} right)} dx); b) (int {4{{sin }^2}frac{x}{2}} dx); c) (int {{{left( {sin frac{x}{2} - cos frac{x}{2}} right)}^2}} dx); d) (int {left( {x + {{tan }^2}x} right)} dx).
Xem chi tiết -
Bài 4.5 trang 11
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\). Biết rằng \(f'\left( x \right) = 2x + \frac{1}{{{x^2}}}\) với mọi \(x \in \left( {0; + \infty } \right)\) và \(f\left( 1 \right) = 1\). Tính giá trị f(4).
Xem chi tiết