Giải mục 2 trang 60 SGK Toán 9 tập 1 - Cùng khám phá

Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?

Tổng hợp Đề thi vào 10 có đáp án và lời giải

Toán - Văn - Anh

Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 60 SGK Toán 9 Cùng khám phá

Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?

Phương pháp giải:

Thay từng giá trị của x vào các căn thức \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\) để tính giá trị tương ứng, từ đó rút ra nhận xét.

Lời giải chi tiết:

Ta thấy: \(\sqrt {{{\left( {2x - 1} \right)}^2}}  = \left| {2x - 1} \right|\).

LT2

Trả lời câu hỏi Luyện tập 2 trang 60 SGK Toán 9 Cùng khám phá

Rút gọn:

a) \(\sqrt {{x^8}} \);

b) \(2\sqrt {{{\left( { - y + 5} \right)}^2}} \) với \(y \ge 5\);

c) \( - 3\sqrt {{z^{10}}} \) với \(z < 0\).

Phương pháp giải:

Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

Lời giải chi tiết:

a) \(\sqrt {{x^8}}  = \sqrt {{{\left( {{x^4}} \right)}^2}}  = \left| {{x^4}} \right| = {x^4}\) (vì \({x^4} \ge 0\));

b) \(2\sqrt {{{\left( { - y + 5} \right)}^2}}  = 2\left| { - y + 5} \right| = 2\left( {y - 5} \right)\) (vì \(y \ge 5\) nên \( - y + 5 \le 0\));

c) \( - 3\sqrt {{z^{10}}}  =  - 3\sqrt {{{\left( {{z^5}} \right)}^2}}  =  - 3\left| {{z^5}} \right| = 3{z^5}\) (vì \(z < 0\) nên \({z^5} < 0\)).

  • Giải mục 3 trang 60, 61 SGK Toán 9 tập 1 - Cùng khám phá

    Hãy chép lại và hoàn thành Bảng 3.2. Em có nhận xét gì về giá trị của \(\sqrt {\left( {x + 1} \right)\left( {x + 3} \right)} \) và \(\sqrt {x + 1} .\sqrt {x + 3} \)?

  • Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá

    Cho biểu thức A không âm và biểu thức B dương. a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B = \sqrt A \). b) Chứng minh \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).

  • Giải mục 5 trang 62, 63, 64 SGK Toán 9 tập 1 - Cùng khám phá

    a) Nhân cả tử và mẫu của biểu thức \(\frac{4}{{3\sqrt 2 }}\) với \(\sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. b) Nhân cả tử và mẫu của biểu thức \(\frac{5}{{\sqrt 2 + 1}}\) với \(\sqrt 2 - 1\) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu. c) Nhân cả tử và mẫu của biểu thức \(\frac{6}{{\sqrt 5 - \sqrt 2 }}\) với \(\sqrt 5 + \sqrt 2 \) rồi biến đổi biểu thức đó về dạng không còn căn thức ở mẫu.

  • Giải bài tập 3.13 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn các biểu thức sau: a) \(\sqrt {25{a^4}} - 2{a^2}\); b) \(3\sqrt {4{b^6}} + 7{b^3}\) với \(b < 0\); c) \(\frac{1}{{x - y}}\sqrt {{x^4}{{\left( {x - y} \right)}^2}} \) với \(x > y\); d) \(\sqrt {0,3} .\sqrt {270{z^2}} \).

  • Giải bài tập 3.14 trang 64 SGK Toán 9 tập 1 - Cùng khám phá

    Rút gọn rồi tính giá trị các biểu thức sau: a) \(\sqrt {9{{\left( {4 - 4x + {x^2}} \right)}^2}} \) tại \(x = \sqrt 2 \); b) \(\sqrt {4{a^2}{{\left( {9{b^2} + 6b + 1} \right)}^2}} \) tại \(a = - 2,b = - \sqrt 3 \); c) \({a^2}{b^2}.\sqrt {\frac{{9{b^4}}}{{25{a^6}}}} \) tại \(a = - 3,b = \sqrt 5 \); d) \(\frac{{\sqrt {3{x^6}{y^4}} }}{{\sqrt {27{x^2}{y^2}} }}\) tại \(x = - 3,y = \sqrt 5 \).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close