Giải mục 3 trang 23, 24 SGK Toán 12 tập 1 - Kết nối tri thức

Đường tiệm cận xiên

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 23 SGK Toán 12 Kết nối tri thức

Cho hàm số y=f(x)=x1+2x+1 có đồ thị (C) và đường thẳng y=x1 như Hình 1.24.

 

a) Với x>1, xét điểm M (x; f(x)) thuộc (C). Gọi H là hình chiếu vuông góc của M trên đường thẳng y=x1. Có nhận xét gì về khoảng cách MH khi x+?

b) Chứng tỏ rằng limx+[f(x)(x1)]=0. Tính chất này thể hiện trên Hình 1.24 như thế nào?

Phương pháp giải:

Sử dụng kiến thức về giới hạn của hàm số để tính giới hạn.

Lời giải chi tiết:

a) Nhìn vào đồ thị ta thấy, khi x+ thì khoảng cách MH tiến tới 0.

b) Ta có: limx+[f(x)(x1)]=limx+[x1+2x+1(x1)]=limx+2x+1=limx+2x1+1x=0

Tính chất này được thể hiện trong Hình 1.24 là: Khoảng cách từ điểm M của đồ thị hàm số (C) đến đường thẳng y=x1 tiến đến 0 khi x+.

LT3

Trả lời câu hỏi Luyện tập 3 trang 24 SGK Toán 12 Kết nối tri thức

Tìm các tiệm cận đứng và tiệm cận xiên của đồ thị hàm số y=f(x)=x24x+21x.

Phương pháp giải:

Sử dụng kiến thức về tìm khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng y=ax+b(a0) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y=f(x) nếu limx+[f(x)(ax+b)]=0 hoặc limx[f(x)(ax+b)]=0

Lời giải chi tiết:

Ta có: limx1+f(x)=limx1+x24x+21x=+; limx1f(x)=limx1x24x+21x=

Vậy tiệm cận đứng của đồ thị hàm số y=f(x) là đường thẳng x=1

Ta có: y=f(x)=x24x+21x=x+311x

Do đó, limx+[f(x)(x+3)]=limx+11x=0, limx[f(x)(x+3)]=limx11x=0

Vậy tiệm cận xiên của đồ thị hàm số y=f(x) là đường thẳng y=x+3

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close