Giải mục 4 trang 70, 71, 72 SGK Toán 11 tập 1 - Cánh Diều

Cho hàm số \(f\left( x \right) = x\) có đồ thị như ở Hình 9. Quan sát đồ thị đó và cho biết: a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu. b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần đâu.

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 6

Cho hàm số \(f\left( x \right) = x\) có đồ thị như ở Hình 9. Quan sát đồ thị đó và cho biết:

a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu.

b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần đâu.

Phương pháp giải:

Quan sát đồ thị hình 9 để trả lời câu hỏi.

Lời giải chi tiết:

a) Khi biến x dần tới dương vô cực thì \(f\left( x \right)\) dần tới dương vô cực.

b) Khi biến x dần tới âm vô cực thì \(f\left( x \right)\) dần âm vô cực.

Luyện tập, vận dụng 6

Tính: \(\mathop {\lim }\limits_{x \to  - \infty } {x^4}.\)

Phương pháp giải:

\(\mathop {\lim }\limits_{x \to  - \infty } {x^k} =  + \infty \) với k là số nguyên dương chẵn.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - \infty } {x^4} =  + \infty \)

  • Bài 1 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Sử dụng định nghĩa, tìm các giới hạn sau: a) (mathop {lim }limits_{x to - 3} {x^2};) b) (mathop {lim }limits_{x to 5} frac{{{x^2} - 25}}{{x - 5}}.)

  • Bài 2 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Biết rằng hàm số (fleft( x right)) thỏa mãn (mathop {lim }limits_{x to {2^ - }} fleft( x right) = 3) và (mathop {lim }limits_{x to {2^ + }} fleft( x right) = 5.) Trong trường hợp này có tồn tại giới hạn (mathop {lim }limits_{x to 2} fleft( x right)) hay không? Giải thích.

  • Bài 3 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to 2} left( {{x^2} - 4x + 3} right);) b) (mathop {lim }limits_{x to 3} frac{{{x^2} - 5x + 6}}{{x - 3}};) c) (mathop {lim }limits_{x to 1} frac{{sqrt x - 1}}{{x - 1}}.)

  • Bài 4 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to + infty } frac{{9x + 1}}{{3x - 4}};) b) (mathop {lim }limits_{x to - infty } frac{{7x - 11}}{{2x + 3}};) c) (mathop {lim }limits_{x to + infty } frac{{sqrt {{x^2} + 1} }}{x};) d) (mathop {lim }limits_{x to - infty } frac{{sqrt {{x^2} + 1} }}{x};) e) (mathop {lim }limits_{x to {6^ - }} frac{1}{{x - 6}};) g) (mathop {lim }limits_{x to {7^ + }} frac{1}{{x - 7}}.)

  • Bài 5 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được (Nleft( t right) = frac{{50t}}{{t + 4}},,left( {t ge 0} right)) bộ phận mỗi ngày sau t ngày đào tạo. Tính (mathop {lim }limits_{t to + infty } Nleft( t right)) và cho biết ý nghĩa của kết quả.

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close