Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \); b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \); c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.XYZ và nhận về những phần quà hấp dẫn

Đề bài

Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \);
c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)

Phương pháp giải - Xem chi tiết

a, b) Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

c) Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Lời giải chi tiết

a) Vì ABCD là hình bình hành nên \(\overrightarrow {AB}  = \overrightarrow {DC} \)

Vì CDD’C’ là hình bình hành nên \(\overrightarrow {C'D'}  = \overrightarrow {CD} ,\overrightarrow {DD'}  = \overrightarrow {CC'} \)

Ta có: \(\overrightarrow {AB}  + \overrightarrow {DD'}  + \overrightarrow {C'D'}  = \overrightarrow {DC}  + \overrightarrow {CC'}  + \overrightarrow {CD}  = \left( {\overrightarrow {CD}  + \overrightarrow {DC} } \right) + \overrightarrow {CC'}  = \overrightarrow {CC'} \)

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {CD'}  - \overrightarrow {CC'}  = \overrightarrow {AB}  + \overrightarrow {C'D'}  = \overrightarrow {AB}  + \overrightarrow {CD}  = \overrightarrow 0 \)

c) Vì ABCD là hình bình hành nên \(\overrightarrow {CB}  + \overrightarrow {CD}  = \overrightarrow {CA} \)

Vì A’ACC’ là hình bình hành nên \(\overrightarrow {CA}  + \overrightarrow {CC'}  = \overrightarrow {CA'} \)

\(\overrightarrow {BC}  - \overrightarrow {CC'}  + \overrightarrow {DC}  =  - \left( {\overrightarrow {CB}  + \overrightarrow {CD} } \right) - \overrightarrow {CC'}  =  - \overrightarrow {CA}  - \overrightarrow {CC'}  =  - \left( {\overrightarrow {CA}  + \overrightarrow {CC'} } \right) =  - \overrightarrow {CA'}  = \overrightarrow {A'C} \)

  • Giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \): a) \(\overrightarrow {AB'} \); b) \(\overrightarrow {B'C} \); c) \(\overrightarrow {BC'} \).

  • Giải bài tập 2.6 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

  • Giải bài tập 2.7 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABC. Trên cạnh SA, lấy điểm M sao cho \(SM = 2AM\). Trên cạnh BC, lấy điểm N sao cho \(CN = 2BN\). Chứng minh rằng \(\overrightarrow {MN} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {BC} } \right) + \overrightarrow {AB} \).

  • Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức

    Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn (overrightarrow {AI} = 3overrightarrow {IG} ), ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8cm (H.2.30).

  • Giải bài tập 2.9 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức

    Ba sợi dây không giãn với khối lượng không đáng kể được buộc chung một đầu và được kéo căng về ba hướng khác nhau (H.2.31). Nếu các lực kéo làm cho ba sợi dây ở trạng thái đứng yên thì khi đó ba sợi dây nằm trên cùng một mặt phẳng. Hãy giải thích vì sao.

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close