Giải bài tập 3 trang 27 SGK Toán 12 tập 1 - Cánh diềuĐồ thị hàm số ở Hình 18a, Hình 18b đều có đường tiệm cận ngang là đường thẳng màu đỏ. Hỏi đó là đồ thị của hàm số nào trong các hàm số sau đây? a) \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\). b) \(y = \frac{{2{x^2} + x + 1}}{{x - 1}}\) c) \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\) Đề bài Đồ thị hàm số ở Hình 18a, Hình 18b đều có đường tiệm cận ngang là đường thẳng màu đỏ. Hỏi đó là đồ thị của hàm số nào trong các hàm số sau đây? a) \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\). b) \(y = \frac{{2{x^2} + x + 1}}{{x - 1}}\) c) \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\) Phương pháp giải - Xem chi tiết Dựa vào đồ thị hàm số để chọn hàm số phù hợp Lời giải chi tiết Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } y = \frac{{2{x^2} - 2}}{{{x^2} + 2}} = 2\). Do đó đường thẳng \(y = 2\) là một đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\). Vậy đồ thị hàm số \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\) là hình 18a. Tương tự, \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}} = 1\). Do đó đường thẳng \(y = 1\) là một đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\). Vậy đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\) là hình 18b.
|