Giải mục 3 trang 24, 25, 26 SGK Toán 12 tập 1 - Cánh diều

Đường tiệm cận xiên

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Lựa chọn câu để xem lời giải nhanh hơn

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 24 SGK Toán 12 Cánh diều

Cho hàm số \(y = f\left( x \right) = x + 1 + \frac{1}{{x - 1}}\) có đồ thị \(\left( C \right)\) và đường thẳng \(y = x + 1\) (Hình 15). Tìm \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {x + 1} \right)} \right];\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( {x + 1} \right)} \right]\)

Phương pháp giải:

Quan sát đồ thị

Lời giải chi tiết:

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{x - 1}} = 0\\\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{x - 1}} = 0\end{array} \right.\)

LT3

Trả lời câu hỏi Luyện tập 3 trang 25 SGK Toán 12 Cánh diều

Chứng minh rằng đường thẳng \(y =  - x\) là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{x + 2}}\).

Phương pháp giải:

Đưởng thẳng \(y = ax + b\left( {a \ne 0} \right)\) được gọi là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\) nếu:

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\).

Lời giải chi tiết:

Ta có: \(y = f\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{x + 2}} =  - x + \frac{3}{{x + 2}}\).

Xét \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( { - x} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{x + 2}} = 0\).

Vậy đường thẳng \(y =  - x\) là đường tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{ - {x^2} - 2x + 3}}{{x + 2}}\)

LT4

Trả lời câu hỏi Luyện tập 4 trang 26 SGK Toán 12 Cánh diều

Tìm tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x + 3}}\).

Phương pháp giải:

Đưởng thẳng \(y = ax + b\left( {a \ne 0} \right)\) được gọi là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\) nếu:

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\).

Lời giải chi tiết:

Ta có: \(y = f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x + 3}} = x - 6 + \frac{{20}}{{x + 3}}\).

Xét \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {x - 6} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{20}}{{x + 3}} = 0\).

Vậy đường thẳng \(y = x - 6\) là đường tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right) = \frac{{{x^2} - 3x + 2}}{{x + 3}}\)

  • Giải bài tập 1 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 2}}{{x + 1}}\) là: A. \(x = - 1\). B. \(x = - 2\). C. \(x = 1\). D. \(x = 2\).

  • Giải bài tập 2 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Tiệm cận xiên của đồ thị hàm số (y = frac{{{x^2} + 3x + 5}}{{x + 2}}) là: A. (y = x). B. (y = x + 1). C. (y = x + 2). D. (y = x + 3).

  • Giải bài tập 3 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Đồ thị hàm số ở Hình 18a, Hình 18b đều có đường tiệm cận ngang là đường thẳng màu đỏ. Hỏi đó là đồ thị của hàm số nào trong các hàm số sau đây? a) \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\). b) \(y = \frac{{2{x^2} + x + 1}}{{x - 1}}\) c) \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\)

  • Giải bài tập 4 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Tìm tiệm cận đứng, ngang, xiên (nếu có) của đồ thị mỗi hàm số sau: a) \(y = \frac{x}{{2 - x}}\) b) \(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}}\) c) \(y = x - 3 + \frac{1}{{{x^2}}}\)

  • Giải bài tập 5 trang 27 SGK Toán 12 tập 1 - Cánh diều

    Số lượng sản phẩm bán được cho một công ty trong x (tháng) được tính theo công thức \(S\left( x \right) = 200\left( {5 - \frac{9}{{2 + x}}} \right)\) trong đó \(x \ge 1\). a) Xem \(y = S\left( x \right)\) là một hàm số xác định trên nửa khoảng \([1; + \infty )\), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về số lượng sản phẩm bán được của công ty đó trong x (tháng) khi x đủ lớn.

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close